
Intelligenza Artificiale

An introduction to
Machine Learning

Ivan Heibi
Dipartimento di Filologia Classica e Italianistica (FICLIT)
Ivan.heibi2@unibo.it

mailto:Ivan.heibi2@unibo.it

Artificial Intelligence an Overview

Artificial Intelligence Logics:
Propositional + FOL

Artificial Intelligence Logics:
Propositional + FOL

Artificial Intelligence an Overview

Machine Learning

Artificial Intelligence Logics:
Propositional + FOL

Artificial Intelligence an Overview

Machine Learning

Deep Learning Artificial Neural Networks

Artificial Intelligence Logics:
Propositional + FOL

Artificial Intelligence an Overview

Machine Learning

Deep Learning Artificial Neural Networks

Foundational models and LLMs

ChatGPT, Dall-e … Deepseek

“AI, Machine Learning, Deep Learning and Generative AI Explained”, IBM Technology, https://tinyurl.com/4csecc34 (youtube video)

https://tinyurl.com/4csecc34

Bibliography

What is Machine Learning?

“A field of study that gives computers the ability to learn without being explicitly programmed.”
Arthur Samuel, 1959

“A computer program is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improves with experience E.”
Tom Mitchell, 1997

T = SPAM Classification
E = Labelled emails (Training Set)
P = Ratio of correctly classified
emails

Why would we want an agent to learn?

If the design of the agent can be improved, why wouldn’t the designers just program in that
improvement to begin with?

Reasons:
1. The designer cannot anticipate all possible situations that the agent might find itself in.
2. The designer cannot anticipate all changes over time (agent should be able to adapt its

behaviour)
3. Sometimes human programmers have no idea how to program a solution themselves!

Why would we want an agent to learn?

If the design of the agent can be improved, why wouldn’t the designers just program in that
improvement to begin with?

SPAM keywords: “4U”,
“credit card”, “free”,
“amazing”

Reasons:
1. The designer cannot anticipate all possible situations that the agent might find itself in.
2. The designer cannot anticipate all changes over time (agent should be able to adapt its

behaviour)
3. Sometimes human programmers have no idea how to program a solution themselves!

Why would we want an agent to learn?

If the design of the agent can be improved, why wouldn’t the designers just program in that
improvement to begin with?

Reasons:
1. The designer cannot anticipate all possible situations that the agent might find itself in.
2. The designer cannot anticipate all changes over time (agent should be able to adapt its

behaviour)
3. Sometimes human programmers have no idea how to program a solution themselves!

SPAM keywords:
“4U”-> “For U”,
“credit card”, “free”,
“amazing”

Why would we want an agent to learn?

If the design of the agent can be improved, why wouldn’t the designers just program in that
improvement to begin with?

Reasons:
1. The designer cannot anticipate all possible situations that the agent might find itself in.
2. The designer cannot anticipate all changes over time (agent should be able to adapt its

behaviour)
3. Sometimes human programmers have no idea how to program a solution themselves!

Example: Speech Recognition

SPAM keywords:
“4U”-> “For U”,
“credit card”, “free”,
“amazing”

Machine Learning can help humans learn

ML algorithms can be inspected to see what they have learned.

For instance, once the spam filter has been trained on enough spam, it can easily be inspected to
reveal the list of words and combinations of words that it believes are the best predictors of spam.

Applying ML techniques to dig into large amounts of data can help discover patterns that were not
immediately apparent. This is called data mining.

Types of Machine Learning Systems

There are different types of Machine Learning systems.

It is useful to classify them in broad categories based on:

● Whether or not they are trained with human supervision
supervised | unsupervised | semi-supervised | Reinforcement Learning

● Whether or not they can learn incrementally on the fly
online learning | batch learning

● Whether they work by simply comparing new data points to known data
points, or instead detect patterns in the training data and build a predictive
model, much like scientists do
instance-based | model-based

Supervised/Unsupervised learning

Machine Learning systems can be classified according to the amount and type of
supervision they get during training.

We can distinguish four main categories:
● Supervised learning
● Unsupervised learning
● Semisupervised learning
● Reinforcement Learning

Supervised learning: classification

In supervised learning, the training data you feed to the algorithm includes the
desired solutions, called labels.

A typical supervised learning task is classification.

Supervised learning: regression

Another typical task is to predict a target numeric value, such as the price of a car, given a set of
features (mileage, age, brand, etc.) called predictors.

This sort of task is called regression.

To train the system, you need to give it many examples of cars, including both their predictors and
their labels (i.e., their prices).

Unsupervised learning

In unsupervised learning the training data is unlabeled

In unsupervised learning the training data is unlabeled

Other tasks in unsupervised learning:
● dimensionality reduction (aiming at simplifying the data without losing too much information)
● visualisation,
● anomaly detection (automatic detection of outliers)

Unsupervised learning

[+] unlabeled data is often more abundant and easier to obtain than labeled data

[+] It can discover hidden patterns and structures in data that may not be obvious
to humans.

[+] It can be used for data preprocessing tasks (e.g., cleaning and dimensionality
reduction) which can improve the performance of other algorithms.

[-] It can be difficult to interpret the results of the algorithm, since we don't know
exactly what it has learned.

[-] It can be difficult to evaluate the performance of the algorithm, since we don't
have labels for the output data.

Unsupervised learning: pros and cons

Semi-supervised learning

Some algorithms can deal with partially labeled training data, usually a lot of unlabeled data and a
little bit of labeled data. This is called semi-supervised learning.

Reinforcement learning

A learning agent in this context, can observe the environment, select and perform
actions, and get rewards in return (or penalties in the form of negative rewards.

It must then learn by itself what is the best strategy, called a policy, to get the most
reward over time.

A policy defines what action the agent should choose when it is in a given situation.

Reinforcement learning: learning agent
Enviro

n
m

ent

Sensors

Actuators

Percepts

Actions

Performance element

Critic

Learning
element

Problem
generator

changes

knowledge

learning
goals

feedback

performance
standard

Agent program

Reinforcement learning

Reinforcement learning demo

http://projects.rajivshah.com/rldemo/

http://projects.rajivshah.com/rldemo/

Another criterion used to classify Machine Learning systems is whether
or not the system can learn incrementally from a stream of incoming
data.

We can distinguish two kinds of approaches:
● Batch learning
● Online learning

Batch and Online learning

In Batch learning (also called offline learning) the system must be
trained with all the data available.

It usually takes a lot of time.

If new data comes, the system needs to be retrained.

For example: ChatGPT

Batch learning

In online learning, you train the system incrementally by feeding it data instances sequentially, either
individually or by small groups called mini-batches.

Each learning step is fast and cheap, so the system can learn about new data on the fly, as it arrives.

Online learning is a valuable solution
in case of: limited computational
resources, huge training dataset
(which may not fit in the system’s memory.

For example:
Banking Fraud Detection

Online learning

One more way to categorize Machine Learning systems is by how they generalize.

Most Machine Learning tasks are about making predictions.
> This means that given a number of training examples, the system needs to be able to
generalize to examples it has never seen before.

Having a good performance measure on the training data is good, but insufficient; the true goal
is to perform well on new instances.

There are two main approaches to generalization:
● instance-based learning
● model-based learning.

Instance-based/model-based learning

A trivial criterion to classify would be
just flagging all emails that are identical
to emails that have already been
flagged by users.

A more general criterion would require
measuring the similarity between
emails and tagging the new email as the
most similar one.

A similarity metric would be counting
the number of words two emails have in
common.

Instance-based learning

In model-based learning a model is used to make prediction.

Model-based learning

In model-based learning a model is used to make prediction.

Model-based learning

A fitness (cost) function measures how good(bad) the model is.
A fitness (cost) function has to be defined to define parameters (i.e. theta).

Model-based learning

Model-based learning

https://github.com/ageron/handson-ml/blob/master/04_training_linear_models.ipynb

https://github.com/ageron/handson-ml/blob/master/04_training_linear_models.ipynb

Challenges

The main Machine Learning task is to select a learning algorithm and train it on
some data.

Therefore, there are two things that can go wrong:
● The data is wrong for your learning problem
● The algorithm selected is wrong for your learning problem

Model-based learning

Training data: insufficient quantity

Most of Machine Learning algorithms take a lot of data to work properly.

Even for very simple problems you typically need thousands of examples, and for complex
problems such as image or speech recognition, you may need millions of examples.

“Contrarily, a toddler is able to learn what an apple is from a very examples.”

A famous paper by Banko and Brill (2001) showed that very different Machine Learning
algorithms, including fairly simple ones, performed almost identically well on a complex
problem of Word Sense Dissambiguation once they were given enough data.

[1] Michele Banko and Eric Brill. 2001. Scaling to very very large corpora for natural language disambiguation. In Proceedings of the 39th Annual
Meeting on Association for Computational Linguistics (ACL '01). Association for Computational Linguistics, USA, 26–33.
https://doi.org/10.3115/1073012.1073017

https://doi.org/10.3115/1073012.1073017

It is crucial that your training data be representative of the new cases you want to generalize to

Training data: nonrepresentative

If your training data is full of errors, outliers, and noise (e.g., due to poor-quality
measurements), it will make it harder for the system to detect the underlying patterns, so your
system is less likely to perform well.

Your system will only be capable of learning if the training data contains enough relevant
features and not too many irrelevant ones.

A critical part of the success of a Machine Learning project is coming up with a good set of
features to train on. This process, called feature engineering, involves:

● Feature selection: selecting the most useful features to train on among existing features.
● Feature extraction: combining existing features to produce a more useful one (as we saw

earlier, dimensionality reduction algorithms can help).
● Feature creation: creating new features by gathering new data

Training data: quality and irrelevant features

Overfitting when a model performs well on the training data, but it does not generalize well on
new data.

Underfitting (the opposite of overfitting) it occurs when a model is too simple to learn the
underlying structure of the data.

Algorithm challenges: Overfitting the training data

Machine learning bias is a phenomenon that occurs when an algorithm produces
results that are systemically prejudiced due to erroneous assumptions in the
machine learning process.

Machine learning bias generally stems from problems introduced by the individuals
who design and/or train the machine learning systems.

These individuals could either:
● create algorithms that reflect unintended cognitive biases or real-life

prejudices.
● Or the individuals could introduce biases because they use incomplete, faulty or

prejudicial data sets to train and/or validate the machine learning systems.

Machine learning bias

A hyperparameter is a parameter whose value is used to control the learning process.

Different model training algorithms require different hyperparameters, some simple algorithms
require none.

Tuning hyperparameters may improve performance over training data.

Hyperparameter tuning

The only way to know how well a model will generalize to new cases is to
actually try it out on new cases.

This is done by splitting the available data into:
● Training set
● Test set.

It is customary to train algorithms on the 80% of data, and testing them on
the remaining 20%.

Testing and validating

Precision and Recall are performance metrics that apply to data retrieved
from a collection.

Precision: Measures the quality of positive predictions. It represents the
proportion of correctly classified positive instances out of all instances
predicted as positive.

Recall: Measures the model's ability to identify all actual positive cases. It
represents the proportion of correctly identified positive instances out of all
actual positives in the dataset.

Evaluating a classifier: precision and recall

A binary classification problem
to identifying whether a system
predicted an email as:
● spam (Positive)
● non-spam (Negative)

precision and recall: example

TP = 150 FP = 20

FN =10 TN = 500

Precision
= 150/170
= 0.882

Recall
= 150/160
= 0.938

The F-score is a measure of a test's accuracy.
It is calculated from the precision and recall of the test.

Evaluating a classifier: F-Score

The F1 score is the harmonic mean of the precision and recall. It thus
symmetrically represents both precision and recall in one metric.

A binary classification problem
to identifying whether a system
predicted an email as:
spam (Positive)
 non-spam (Negative)

precision and recall: example with F1

TP = 150 FP = 20

FN =10 TN = 500

Precision
= 150/170
= 0.882

Recall
= 150/160
= 0.938

The F1 score favours classifiers that have similar precision and recall.

This is not always what you want: in some contexts, you mostly care about precision,
and in other contexts you really care about recall, e.g.:

favour precision: Detecting safe videos for kids
favour recall: Detecting shoplifters

Increasing precision reduces recall !!

Evaluating a classifier: Precision/recall trade off

K-fold cross-validation means splitting the training
set into K-folds (e.g. three), then making predictions
and evaluating them on each fold using a model
trained on the remaining folds.

1. Shuffle the dataset randomly.

2. Split the dataset into k groups

3. For each unique group:

1. Take the group as a hold out or test data set

2. Take the remaining groups as a training data set

3. Fit a model on the training set and evaluate it on the test set

4. Retain the evaluation score and discard the model

4. Summarize the skill of the model using the sample of model evaluation
scores

Evaluating a classifier: K-fold cross-validation

Classification task: MNIST dataset
• 70,000 labeled images

• Each image is 28x28 pixels

• Therefore, we can model images with 784 features (one per pixel).

• Each feature is an integer representing the intensity of the pixel,
ranging from 0 (white) to 255 (black)

0 0 6 9 0 42

0 1 2 3 782 783

Binary classification: MNIST dataset

Instead to train the algorithm to identify all the digits (i.e. 0-9), let’s simplify the
problem in the identification of the digit 5.

In this case, we have a binary classification, since the algorithm has to distinguish
between two classes: images picturing the digit 5, and images that do represent
picture the digit 5.

Binary classification: MNIST dataset

Training set Test set

Binary classification: MNIST dataset

Training set Test set

Shuffle examples!

Collect new examples and balance classes via undersampling/oversampling of the
training and test set.

Binary classification: MNIST dataset

Training set Test set

The general idea is to count the number of times instances of class A are classified as class B. For example, it
allows you to know the number of times the classifier confused images of 5s with other digits.

Each row in a confusion matrix represents an actual class, while each column represents a predicted class.

Confusion matrix

Multiclass classifiers can distinguish between more than two classes.

Some algorithms (such as Random Forest classifiers or naive Bayes classifiers) are capable of
handling multiple classes directly. Others (such as Support Vector Machine classifiers or Linear
classifiers) are strictly binary classifiers.

However, there are various strategies that you can use to perform multiclass classification
using multiple binary classifiers.

The most common are:

● One-versus-All (OvA)
● One-versus-One (OvO)

Multiclass classification

Suppose you want to train a classifier to distinguish all the digits, i.e. 0 to 9.

One way to create such a system is to train 10 binary classifiers, one for each digit (a
0-detector, a 1-detector, a 2-detector, and so on).

Then when you want to classify an image, you get the decision score from each classifier
for that image and you select the class whose classifier outputs the highest score.

This is called the one-versus-all (OvA) strategy (also called one-versus-the-rest).

Multiclass classification: One-versus-All

Another strategy is to train a binary classifier for every pair of digits: one to distinguish 0s
and 1s, another to distinguish 0s and 2s, another for 1s and 2s, and so on.

This is called the one-versus-one (OvO) strategy.

If there are N classes, you need to train N × (N – 1) / 2 classifiers.

Some algorithms (such as Support Vector Machine classifiers) scale poorly with the size
of the training set, so for these algorithms, OvO is preferred since it is faster to train
many classifiers on small training sets than training a few classifiers on large training sets.

For most binary classification algorithms, however, OvA is preferred.

Multiclass classification: One-versus-One

Unsupervised
learning
Wouldn’t it be great if the algorithm

could just exploit the unlabeled data

without needing human intervention?

In this presentation, we dive into a specific unsupervised learning task: clustering.

Clustering is the task of identifying similar instances and assigning them to clusters, i.e., groups
of similar instances.

Clustering

Examples of applications: customer segmentation, dimensionality reduction, anomaly detection.

https://developers.google.com/machine-learning/clustering/overview?hl=it

https://developers.google.com/machine-learning/clustering/overview?hl=it

Suppose you were given the centroids: you could easily label all the instances in the dataset by
assigning each of them to the cluster whose centroid is closest.

Conversely, if you were given all the instance labels, you could easily locate all the centroids by
computing the mean of the instances for each cluster.

But, typically, you are given neither the labels nor the centroids.
● Start by placing the centroids randomly (e.g., by picking k instances at random and using

their locations as centroids).
● Assign instances to the closest centroid
● Compute new centroids
● Continue until the centroids stop moving

Online demo: https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/

K-means

https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/

K-means: example

K-means: example

K-Means Clustering Demo

https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/

https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/

The algorithm is guaranteed to converge in a finite number of steps (usually quite small), it will
not oscillate forever.

Unfortunately, although the algorithm is guaranteed to converge, it may not converge to the
right solution (i.e., it may converge to a local optimum): this depends on the centroid
initialization.

A simple solution to the problem could be running the algorithm multiple times with different
random initializations and keeping the best solution.

How exactly does it know which solution is the best?

The performance metric used is called inertia which is the mean squared distance between
each instance and its closest centroid.

K-means

So far, we have set the number of clusters k to 5 because it was obvious by looking at the data
that this is the correct number of clusters. But in general, it will not be so easy to know how to
set k, and the result might be quite bad if you set it to the wrong value.

K-Means finding the optimal k

