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Humans, it seems, know things; and what they know helps them do things.

Intelligence of humans is achieved - not (always) by purely reflex mechanisms 
but by processes of reasoning that operate on internal representation of 
knowledge.

In AI, knowledge- based agents use a process of reasoning over an internal 
representation of knowledge to decide what actions to take.

The central component of a knowledge-based agents is its knowledge base.

Knowledge-based agents



A knowledge base (KB) is a “set of sentences” .

Each sentence is expressed in a language (i.e. the knowledge representation 
language) and represents some assertion about the world (called, axioms).

Operations:
● TELL (add a new sentence to the knowledge base)
● ASK (query the knowledge base)

Both operation may involve inference. 
Inference is the process of deriving consequences from premises.

Knowledge base 



The background knowledge is the knowledge “initially” contained in the KB of 
an agent.

This may include knowledge about:
● Properties of the environments
● Properties of the objects
● Events might be useful for the task of the agents
● Other agents in the environment

....

Agents with background knowledge



Each time the agent program is called does three things:
● TELLs the knowledge base what it perceives
● ASKs the knowledge base what action it should perform.
● TELLs the knowledge base which action was chosen, and the agent executes the 

action.

It is similar to the the agent program skeleton already seen but the behaviour of a 
knowledge based agents can be completely specified at knowledge level.
> We need specify only what agent knows and what its goals are.

It is worth noticing that the description of the behaviour is independent of how the 
agent actually work how the operations are implemented. The implementation of the 
behaviour is done at symbol/implementation level

Knowledge level and Symbol/Implementation Level



An automated taxi with:
● Goal of taking a passenger from Bologna to Milan
● He knows that the A1 is the only link between the two locations

We expect it to drive through A1 because it knows that will achieve its goal. 

This analysis is independent of how the taxi works at the implementation level (it works 
on the knowledge level). such as: 
> “The  geographical knowledge is implemented as linked lists or pixel maps?“
> it reasons by manipulating strings or by propagating noisy signals in a network of neurons?
> … etc

Knowledge Base Agent - Example



Knowledge Base Agent – pseudocode
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function KB-AGENT(percept) returns an action 
    
   persistent: KB, a knowledge base

            t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept,t)) 
action←ASK(KB, MAKE-ACTION-QUERY(t)) 
TELL(KB, MAKE-ACTION-SENTENCE(action, t)) 
t←t + 1
return action



Sentences of a knowledge base are expressed according to the syntax of the 
representation language. The syntax specifies all the sentences that are well formed 
>Example: in arithmetics, X+Y=4  vs 4XY+= 

A logic must also define the semantics (meaning) of sentences. The semantics defines 
the truth of each sentence with respect to each possible world (also called model)
> Example: X + Y = 4 is true in a world where X = 2 and Y=2, but also in a world where X = 
3 and Y = 1. The sentence is false in a world where X = 1 and Y = 1

In standard logics, every sentence must be either true or false in each possible world (model). 

Logic



The possible models are just all possible assignments of nonnegative integers to the 
variables x and y, which determine the truth of any sentence of arithmetic whose 
variables are x and y.

If a sentence α is true in model m, then we say: 
●  m satisfies α; or 
● m is a model of α 

We use the notation M(α) to mean the set of all models of α.

A sentence α entails a sentence β, if β logically follows α 

α ⊨ β
α ⊨ β if and only if, in every model in which α is true, β is also true:

α ⊨ β if and only if M(α) ⊆ M(β)

Satisfaction and Entailment

Example:
x=0 entails xy = 0



The definition of entailment can be applied to derive conclusions—that is, to carry out logical 
inference

if an inference algorithm i can derive α from KB we write:

An inference algorithm that derives only entailed sentences is called sound or 
truth-preserving

An inference algorithm is complete if it can derive any sentence that is entailed

Inference



Suppose that sentences A, B and C are derivable from a KB, but only A and B are 
entailed by the KB.

> An algorithm that derives C from the KB is not sound.

> An algorithm that derives only A from the KB is not complete.

> An algorithm that derives only A and B  from the KB is sound and complete

Inference – summary



An AI system (KB) designed for image recognition. 

Sentences A, B, and C could represent different information deducible from KB:

● A: "The object is a dog"
● B: "The object is brown"
● C: "The object is a domestic animal"

Based on the information that is logically implied by the premises (KB), we might have 
only A and B as entailed consequences. 

> We could say that "The object is a dog" (A) and "The object is brown" (B) are the only 
information that we can guarantee to be true (based on KB)

> The sentence C ("The object is a domestic animal") might be deducible, but it could 
depend on further considerations not explicitly stated in KB

Inference – example



The grounding is the connection between the logical statements and the aspects of the 
real world where the agent exists.

> how do we know that KB is true in the real world?

Grounding

Representation

World

Sentences Sentences 

Aspects of the 
real world 

Aspects of the 
real world 

Entails

Sem
antics

Sem
antics

Follows



Self assessment

https://forms.gle/TZqhW6TZFcinjq7t6 

https://forms.gle/TZqhW6TZFcinjq7t6


Propositional 
Logic



The atomic sentences consist of a single propositional symbol

Each symbol stands for a proposition that can be true or false

Symbols start with an uppercase and may contain other letters or subscripts (e.g. P, Q, 
Flag, StoreOpen, etc)

The symbol True is always true, False is always false

Complex sentences are constructed from simpler sentences, using parentheses an 
logical connectives

Propositional Logic: syntax



¬ (not). used to negate a sentence (e.g., ¬A)

∧ (and). used to conjunct two sentences (e.g., A ∧ B)

∨ (or). used to disjunct two sentences (e.g., A ∨ B)

⇒ (implies). used to assert implications (e.g., A ⇒ B, if A is True then B is True), Implications are also 
known as rules or if–then statements.

⇔ (if and only if). used to assert equivalences  (e.g., A ⇔ B, A is True if and only if B is True)

S → AtomicSentence | ComplexSentence 

AtomicSentence → True| False| P| Q| R| ...

ComplexSentence → | (S) | ¬S | S∧S | S∨S | S⇒S | S⇔S

Operator precedence: ¬,∧,∨,⇒,⇔

Propositional logic: Logical connectives



The semantics defines the rules for determining the truth of a sentence with respect to a particular 
model. 

In propositional logic, a model simply fixes the truth value for every proposition symbol.
> For example a model could be m  = {A = false, B = true}

Once the truth value is specified for every proposition symbol of the model, the semantics must 
specify how to compute the truth value of any sentence.

Propositional logic: semantics

 



Propositional logic: truth tables



Example: the vacuum cleaner

KB:
CleanA is True if position A is clean  
CleanB is True if position B is clean 
VacuumA is True if the vacuum position is A
VacuumB is True if the vacuum position is B

VacuumA ⇒ CleanA
VacuumB ⇒ CleanB
VacuumA ∧ VacuumB ⇔ False
VacuumA ∨ VacuumB ⇔ True

Percept: 
VacuumA,  ¬CleanB

Goal:
CleanA ∧ CleanB



A simple inference procedure

In which model the goal (i.e. a sentence) is satisfied?

A greedy algorithm would enumerate all possible worlds and check that the goal is true 
in very model in which the KB is true.

The KB is true in: 
● m1 = {VacuumA = F,  VacuumB = T, CleanA = T, CleanB = T} 
● m2 = {VacuumA = T,  VacuumB= F, CleanA = T, CleanB = T} 
● ...

There are finitely models (in particular 2n) => Time complexity O(2n)

Finitely many is not always the same as “few”



A simple inference procedure – truth table (1)

VA VB CA CB VA ⇒ CA VB ⇒ CB VA ∧ VB ⇔ False VA ∨ VB ⇔ True CA ∧ CB

F F F F T T T F F

F F F T T T T F F

F F T F T T T F F

F F T T T T T F T

F T F F T F T T F

F T F T T T T T F

F T T F T F T T F

F T T T T T T T T

T F F F F T T T F

T F F T F T T T F

T F T F T T T T F

T F T T T T T T T

T T F F F F F T F

T T F T F T F T F

T T T F T F F T F

T T T T T T F T T

 



A simple inference procedure – truth table (2)

VA VB CA CB VA ⇒ CA VB ⇒ CB VA ∧ VB ⇔ False VA ∨ VB ⇔ True CA ∨ CB

F F F F T T T F F

F F F T T T T F F

F F T F T T T F F

F F T T T T T F T

F T F F T F T T F

F T F T T T T T T

F T T F T F T T F

F T T T T T T T T

T F F F F T T T F

T F F T F T T T F

T F T F T T T T T

T F T T T T T T T

T T F F F F F T F

T T F T F T F T F

T T T F T F F T F

T T T T T T F T T

 



Theorem proving: Logical equivalence

Theorem proving applies rules of inference directly to the sentences in our KB in order 
to construct a proof of the desired sentences without consulting models

Theorem provers use logical equivalence: two sentences are logically equivalent if they 
are true in the same set of models

α ≡ β

For instance: 
A ∧ B ≡ B ∧ A

α ≡ β if and only if α ⊨ β and β ⊨ α



Theorem proving: Logical equivalence



Theorem proving: Validity

A sentence is valid if its true in all models

 For example, this is a valid sentence: 
A ∨ ¬A

Valid sentences are also called tautologies

What about this one ¬(A∧¬A) ?



Theorem proving: Deduction theorem

Why do we need valid sentences?

For any pair of sentences α and β we have that:

α ⊨ β if and only if α⇒ β is valid

The theorem establishes a relationship between proofs in formal logic systems and 
conditional statements



A sentence is satisfiable if it is true in, or satisfied by, some model
> can be checked by enumerating the possible models until one is found that 
satisfies the sentence.

The problem of determining the satisfiability of sentences in propositional logic is 
called SAT problem.

For example:  
(P∨¬Q)∧(¬P∨R) is satisfiable 
> since at least one model makes true, 
e.g.: P = True, Q=False, R=True

Check (step by step):
1. (P∨¬Q) is True
2. (¬P∨R) is True
3. (P∨¬Q)∧(¬P∨R) is True

Theorem proving: Satisfiability



Validity and satisfiability are of course connected! 

● α is valid if and only if ¬α is unsatisfiable; 
● α is satisfiable if and only if ¬α is not valid.

Another important result is:
α ⊨ β if and only if the sentence (α ∧ ¬β) is unsatisfiable

> Proof it by contradiction:  One assumes a sentence β to be false and shows that 
this leads to a contradiction with known axioms α.

Validity and Satisfiability



One final property of logical systems is monotonicity, which says that the set of 
entailed sentences can only increase as information is added to the KB

For any sentences α and β, if KB ⊨ α then KB∧β ⊨ α.

For example (Vacuum example): 
If the KB contains the additional assertion β stating that Cell A is clean in the world, helps the 
agent draw additional conclusions, but it cannot invalidate any conclusion α already 
inferred—such as the conclusion that Cell B is dirty

Monotonicity



Inference rules can be applied to derive a proof – a chain of conclusions that leads 
to the desired goal. 

The best-known rule is called Modus Ponens!

The notation means that, whenever any sentences of the form α ⇒ β and α are 
given, then the sentence β can be inferred.

Inference and proofs: Modus ponens



From a conjunction, any of the conjuncts can be inferred:

Given two sentences α and β a conjunction could be asserted:

Inference and proofs: AND elimination/introduction 



Given a disjunction between α and β, and the negation of one of the disjuncts, the 
other could be inferred:

Given α, then a disjunction with any β could be formed:

Inference and proofs: OR elimination/introduction 



By considering the possible truth values of α and β, one can easily show once and for all that 
Modus Ponens and And-Elimination are sound

Used on instances to generate other sound inferences without the need for enumerating 
models

All of the logical equivalences (seen before) can be used as inference rules

Not all inference rules work in both directions. 
E.g., we cannot run Modus Ponens in the opposite direction to obtain α ⇒ β and α from β.

Inference and proofs



Exercises



Which of the following propositional logic sentences is well-formed: 

Exercises (1)

1. p∧(q∨¬r) Yes

2. ¬( p ⇒ q) Yes

3. p∧q⇒ No

4. (p∨q)∧
(¬p∨r)

Yes

5. ¬(p∧q∨¬) No

6. p⟺(q∧¬r) Yes



Which of the following propositional logic sentences is well-formed: 

Exercises (1) – Solution

1. p∧(q∨¬r) Yes

2. ¬( p ⇒ q) Yes

3. p∧q⇒ No

4. (p∨q)∧
(¬p∨r)

Yes

5. ¬(p∧q∨¬) No

6. p⟺(q∧¬r) Yes



Compute the truth table of (P∧Q)∨¬R

Exercises (2)

P Q R ¬R (P∧Q) (P∧Q)
∨¬R

F F F T F T

F F T F F F

F T F T F T

F T T F F F

T F F T F T

T F T F F F

T T F T T T

T T T F T T



Compute the truth table of (P∧Q)∨¬R

Exercises (2) – Solution

P Q R ¬R (P∧Q) (P∧Q)
∨¬R

F F F T F T

F F T F F F

F T F T F T

F T T F F F

T F F T F T

T F T F F F

T T F T T T

T T T F T T



Compute the truth table of (p∨q)∧(¬p∧r) 

Exercises (3)

p q r ¬p (¬p∧r
) 

(p∨q) ( p∨q ) ∧ (¬p∧r) 

F F F T F F F

F F T T T F F

F T F T F T F

F T T T T T T

T F F F F T F

T F T F F T F

T T F F F T F

T T T F F T F



Compute the truth table of (p∨q)∧(¬p∧r) 

Exercises (3) – Solution

p q r ¬p (¬p∧r
) 

(p∨q) ( p∨q ) ∧ (¬p∧r) 

F F F T F F F

F F T T T F F

F T F T F T F

F T T T T T T

T F F F F T F

T F T F F T F

T T F F F T F

T T T F F T F



Let’s consider a propositional language where 

● H means “Paul is happy”

● P means “Paul paints a picture”

● R means “Rachel is happy”

Formalize the following sentences in propositional logic:

Exercises (4)

1. If Paul is happy and paints, then Rachel isn’t happy (H∧P)⇒¬R

2. If Paul is happy, then he paints a picture H⇒P

3. If Rachel isn’t happy Paul is happy ¬R ⇒ H



Let’s consider a propositional language where 

● H means “Paul is happy”

● P means “Paul paints a picture”

● R means “Rachel is happy”

Formalize the following sentences in propositional logic:

Exercises (4) – Solution

1. If Paul is happy and paints, then Rachel is happy (H∧P)⇒R

2. If Paul is happy, then he paints a picture H⇒P

3. If Rachel isn’t happy Paul is happy ¬R ⇒ H



Let’s consider the same example of Paul and Rachel.

Premise: 
● If Paul is happy and paints a picture (H∧P), then Rachel is happy (R)
● If Paul is happy (H) then he paints a picture  (P)

Given Information: Paul is happy (H)
Inference: Conclude whether Rachel is happy (R) based on the given information.

Exercises (5)



Let’s consider the same example of Paul and Rachel.

Premise: 
● If Paul is happy and paints a picture (H∧P), then Rachel is happy (R)
● If Paul is happy (H) then he paints a picture  (P)

Given Information: Paul is happy (H)
Inference: Conclude whether Rachel is happy (R) based on the given information.

1) The premise (1): (H∧P)⇒R

2) The premise (2): H⇒P

3) Given: H

4) Modus Ponens (2) and (3): P 

5) And-introduction (3) and (4): H∧P
6) Modus Ponens (1) and (5): R

> Rachel is Happy!

Exercises (5) – Solution

(H∧P)

⇒R

H⇒P H

P

H∧P

R



Forwards Proof: 
● Starts from premises and uses logical rules of inference to derive a 

conclusion.
● Shows that if certain conditions hold, then a particular conclusion can be 

derived

Backwards Proof:
● Starts from the conclusion and works backward, showing that the 

conclusion follows logically from certain assumptions.
● Shows that the conclusion is a logical consequence of certain conditions.

Proofs forwards and backwards



Prove that ¬R follows from P∧ S, Q ⇒¬R, and ¬S ∨ Q

1. P∧ S (given)
2. Q ⇒¬R (given)
3. ¬S ∨ Q (given)
4.   
5.    
6.    
7. ¬R

Proofs forwards and backwards - backward example



Prove that ¬R follows from P∧ S, Q ⇒¬R, and ¬S ∨ Q

1. P∧ S (given)
2. Q ⇒¬R (given)
3. ¬S ∨ Q (given)
4.   
5.    
6. Q 
7. ¬R (modus ponens: 6, 2)

Proofs forwards and backwards - backward example



Prove that ¬R follows from P∧ S, Q ⇒¬R, and ¬S ∨ Q

1. P∧ S (given)
2. Q ⇒¬R (given)
3. ¬S ∨ Q (given)
4.
5. ¬¬S 
6. Q (or-elimination: 3,5)
7. ¬R (modus ponens: 6, 2)

Proofs forwards and backwards - backward example



Prove that ¬R follows from P∧ S, Q ⇒¬R, and ¬S ∨ Q

1. P∧ S (given)
2. Q ⇒¬R (given)
3. ¬S ∨ Q (given)
4. S 
5. ¬¬S (double negation: 4)
6. Q (or-elimination: 3,5)
7. ¬R (modus ponens: 6, 2)

Proofs forwards and backwards - backward example



Prove that ¬R follows from P∧ S, Q ⇒¬R, and ¬S ∨ Q

1. P∧ S (given)
2. Q ⇒¬R (given)
3. ¬S ∨ Q (given)
4. S (and-elimination: 1)
5. ¬¬S (double negation: 4)
6. Q (or-elimination: 3,5)
7. ¬R (modus ponens: 6, 2)

Proofs forwards and backwards - backward example

Usually, if the primary goal is to 
establish the truth of a specific known 
conclusion, a backward proof might 
be the most effective choice.



Truth Table Generator (by the university of Stanford): 
https://web.stanford.edu/class/cs103/tools/truth-table-tool/ 

Propositional logic test on Wolfram demonstration projects (free online 
resource): https://demonstrations.wolfram.com/PropositionalLogicTest/ 

Useful links

https://web.stanford.edu/class/cs103/tools/truth-table-tool/
https://demonstrations.wolfram.com/PropositionalLogicTest/



