
Intelligenza Artificiale

Intelligent Agents
Part II

Ivan Heibi
Dipartimento di Filologia Classica e Italianistica (FICLIT)
Ivan.heibi2@unibo.it

mailto:Ivan.heibi2@unibo.it

What is an agent? (recap)

An agent is anything that can be viewed as:
● perceiving its environment through sensors
● acting upon that environment through actuators

Agent

Enviro
n

m
ent

Sensors

Actuators

?

Percepts

Actions

An agent’s choice of
action at any given
instant can depend on
the entire percept
sequence observed to
date.

Agent Function (recap)

Mathematically speaking, an agent behaviour can be described by a function
that maps any given percept sequence to an action.

We can imagine this function as a table with (possibly infinite) number of rows

Example: Vacuum agent

Environment: Square A, Square B

Perceptions: Square Dirty, Square Clean

Actions: Move left, Move right, Draw up the dirt

Percept sequence Action

[A, Clean] Right

[A, Dirty] Draw up

[B, Clean] Left

[B, Dirty] Draw up

[A, Clean][A, Clean] Right

[A, Clean][A, Dirty] Draw up

....

[A, Clean][A, Clean] [A, Clean] Right

[A, Clean][A, Clean] [A, Dirty] Draw up

...

PEAS description (recap)

The PEAS description is an acronym for the elements needed for specifying the problem:

● Performance measure
It defines what the agent aspires.

● Environment
It is where the agent operates.

● Actuators
The “devices” that allow the agent to operate

● Sensors
The “devices” that allow the agent to percept

Agent type Performance measure Environment Actuators Sensors

Automated
Taxi Driver

Safe, fast, legal,
comfortable trip,
maximize profits

Roads, pedestrian,
customers

Steering,
accelerator, brake,
signal, horn, display

Cameras, sonar,
speedometer, GPS

Dimensions (recap)

The real world is partially observable, multiagent, stochastic, sequential, dynamic,
continuous, unknown

Dimension Chess w clock Poker Object
recognition

Taxi

Fully / Partially Observable Fully Partially Fully Partially

Single / Multi Agent Multi Multi Single Multi

Deterministic / Stochastic Deterministic Stochastic Deterministic Stochastic

Episodic / Sequential Sequential Sequential Episodic Sequential

Static / Dynamic Semi-Dynamic Static Static Dynamic

Discrete / Continuous Discrete Discrete Continuous Continuous

Agent programs

The job of AI is to design an agent program that implements the agent function

We assume this program will run on some sort of computing device with
physical sensors and actuators (we call this architecture).

Agent

Enviro
n

m
ent

Sensors

Actuators

agent program

Percepts

Actions

agent = architecture + program

Note: agent program
is not the agent function.

1

2

3

4

5

function TABLE-DRIVEN-AGENT(percept) returns an action

persistent:
 percepts, a sequence, initially empty,
 table, a table of actions, indexed by
 percept sequences, initially fully specified

append percept to the end of percepts

action←LOOKUP(percepts,table)

return action

Exemplary agent program (pseudocode)

1

2

3

4

5

function TABLE-DRIVEN-AGENT(percept) returns an action

persistent:
 percepts, a sequence, initially empty,
 table, a table of actions, indexed by
 percept sequences, initially fully specified

append percept to the end of percepts

action←LOOKUP(percepts,table)

return action

Exemplary agent program (pseudocode)

1

2

3

4

5

function TABLE-DRIVEN-AGENT(percept) returns an action

persistent:
 percepts, a sequence, initially empty,
 table, a table of actions, indexed by
 percept sequences, initially fully specified

append percept to the end of percepts

action←LOOKUP(percepts,table)

return action

Exemplary agent program (pseudocode)

1

2

3

4

5

function TABLE-DRIVEN-AGENT(percept) returns an action

persistent:
 percepts, a sequence, initially empty,
 table, a table of actions, indexed by
 percept sequences, initially fully specified

append percept to the end of percepts

action←LOOKUP(percepts,table)

return action

Exemplary agent program (pseudocode)

1

2

3

4

5

function TABLE-DRIVEN-AGENT(percept) returns an action

persistent:
 percepts, a sequence, initially empty,
 table, a table of actions, indexed by
 percept sequences, initially fully specified

append percept to the end of percepts

action←LOOKUP(percepts,table)

return action

Exemplary agent program (pseudocode)

1

2

3

4

5

function TABLE-DRIVEN-AGENT(percept) returns an action

persistent:
 percepts, a sequence, initially empty,
 table, a table of actions, indexed by
 percept sequences, initially fully specified

append percept to the end of percepts

action←LOOKUP(percepts,table)

return action

Exemplary agent program (pseudocode)

Exemplary agent program – example

percepts = [A,clean]

table = Percept
sequence

Action

[A, Clean] Right

[A, Dirty] Suck

[B, Clean] Left

[B, Dirty] Suck

[A, Clean][A,
Clean]

Right

[A, Clean][A,
Dirty]

Suck

… …

Example: Vacuum agent

Environment: Square A, Square B

Perceptions: Square Dirty, Square Clean

Actions: Move left, Move right, Draw up the dirt

Percept
sequence

Action

[A, Clean] Right

[A, Dirty] Draw up

[B, Clean] Left

[B, Dirty] Draw up

[A, Clean]
[A, Clean]

Right

[A, Clean]
[A, Dirty]

Draw up

… …

Exemplary agent program – example

percepts = [A,clean]

table = Percept
sequence

Action

[A, Clean] Right

[A, Dirty] Suck

[B, Clean] Left

[B, Dirty] Suck

[A, Clean][A,
Clean]

Right

[A, Clean][A,
Dirty]

Suck

… …

TABLE-DRIVEN-AGENT (percept)

percept = [A,dirty] Example: Vacuum agent

Environment: Square A, Square B

Perceptions: Square Dirty, Square Clean

Actions: Move left, Move right, Draw up the dirt

Percept
sequence

Action

[A, Clean] Right

[A, Dirty] Draw up

[B, Clean] Left

[B, Dirty] Draw up

[A, Clean]
[A, Clean]

Right

[A, Clean]
[A, Dirty]

Draw up

… …

Exemplary agent program – example

percepts = [A,clean] [A,dirty]

table = Percept
sequence

Action

[A, Clean] Right

[A, Dirty] Suck

[B, Clean] Left

[B, Dirty] Suck

[A, Clean][A,
Clean]

Right

[A, Clean][A,
Dirty]

Suck

… …

TABLE-DRIVEN-AGENT (percept)

percept = [A,dirty] Example: Vacuum agent

Environment: Square A, Square B

Perceptions: Square Dirty, Square Clean

Actions: Move left, Move right, Draw up the dirt

append percept to the end of percepts

Percept
sequence

Action

[A, Clean] Right

[A, Dirty] Draw up

[B, Clean] Left

[B, Dirty] Draw up

[A, Clean]
[A, Clean]

Right

[A, Clean]
[A, Dirty]

Draw up

… …

Exemplary agent program – example

percepts = [A,clean] [A,dirty]

table = Percept
sequence

Action

[A, Clean] Right

[A, Dirty] Draw up

[B, Clean] Left

[B, Dirty] Draw up

[A, Clean]
[A, Clean]

Right

[A, Clean]
[A, Dirty]

Draw up

… …

TABLE-DRIVEN-AGENT (percept)

percept = [A,dirty] Example: Vacuum agent

Environment: Square A, Square B

Perceptions: Square Dirty, Square Clean

Actions: Move left, Move right, Draw up the dirt

append percept to the end of percepts

action←LOOKUP(percepts,table)

The key challenge for AI is to find out how to write programs that, to the extent
possible, produce rational behavior from a smallish program rather than from a
vast table.

In the remainder of this presentation we will see four basic kinds of agent programs
that embody the principles underlying almost all
intelligent systems:

Simple reflex agents;

Model-based reflex agents;

Goal-based agents;

Utility-based agents.

Types of agent programs

Agent

Sensors

Actuators

agent program

Simple reflex agents

The simplest kind of agent is the simple reflex
agent

These agents select actions on the basis of the
current percept, ignoring the rest of the
percept history.

Their behaviour can be described by
condition-action (CA) rules:
If <percept> then <action>

Example: If car-in-front-is-braking
then initiate-braking

Simple reflex agent are designed to work when the
environment if fully observable

Enviro
n

m
ent

Sensors

Actuators

Percepts

Actions

What the world is like now?

What action I should do now

CA Rules

Simple reflex agent – Vacuum agent example

1

2
3
4

5

function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then action←Draw_up
else if location = A then action←Right
else if location = B then action←Left

return action

The most obvious reduction comes from ignoring the percept history,
which cuts down the number of relevant percept sequences

Simple reflex agent – Infinite loops

Suppose that a simple reflex vacuum agent is deprived of its location sensor and has only a
dirt sensor.

Its behaviour could be described with the following CA rules:

> If Dirt then draw up.

> If Clean then move left.

If the agent is on square A, it fails forever!

To avoid from infinite loop the agent can randomize its actions.

For example, if the vacuum perceives the square as clean, it might flip a coin to choose
between Left and Right

In single-agent environments, randomization is usually not rational
> we can do better with more sophisticated agents

Model-based reflex agents
The most effective way to handle partial observability is for the agent to keep track of the part of the
world it can’t see now.

The agent should maintain some sort of internal state that depends on the percept history and thereby
reflects at least some of the unobserved aspects of the current state.

To update this internal state information the agent needs information about how:
> the world evolves independently of his actions;
> his own actions affect the world.

This knowledge about “how the world works” is called model of the world.

An agent that uses such a model is called a model-based agent.

The details of how models and states are represented vary widely depending on the environment and the
technology used in the agent design.

Model-based reflex agents
Enviro

n
m

ent

Sensors

Actuators

Percepts

Actions

What the world is like now?

What action I should do now

How the world evolves

State

CA rules

What my actions do

If the environment is
partially observable,
the agent update the
environment with its
best guess on the
state.

Model-based reflex agents – pseudocode

1

2

3
4
5

6

function MODEL-BASED-REFLEX-AGENT (percept) returns an action

 persistent:
 state, agent’s current conception of the world state
 transition model, a description of how the next state
 depends on the current state and action
 sensor model, a description of how the current world
 state is reflected in the agent’s percepts
 rules, a set of condition–action rules
 action, the most recent action

state←UPDATE-STATE(state,action,percept,transition model,sensor model)
rule←RULE-MATCH(state,rules)
action←rule.ACTION

return action

Goal-based agents

Knowing the state of the environment is not always enough to decide what to do (e.g.
taxi driver)
➔ agents needs some sort of goal information that describes desirable situations

Sometimes the goal selection is straightforward, sometimes is more tricky!

Search and Planning are the subfields of AI devoted to finding action sequences that
achieve the agent’s goal.

In other cases, additional reasoning capabilities are needed to decide among different
(possibly conflicting) goals. For example, consider the taxi driver example, maximize the
speed and the safety conflict!

Goal-based agents
Enviro

n
m

ent
Sensors

Actuators

Percepts

Actions

What the world is like now?

What action I should do now

How the world evolves

State

Goals

What my actions do

What it will be like if I do
action A?

Utility-based agents

Goals alone are not enough to generate high-quality behaviour in most environments.

A more general performance measure should allow a comparison of different world
states according to exactly how “happy” they would make the agent.

”Happy” doesn’t sound very scientific, it would be better use the term utility.

An utility function is essentially an internalization of the performance measure.

➔ If the internal utility function and the external performance measure (based on the
objectives) are in agreement, then an agent that chooses actions to maximize its
utility will be rational to its aim.

Utility-based agents

In two kinds of cases, goal-based agents are inadequate but a utility-based agent can still
make rational decisions:

● When there are conflicting goals, only some of which can be achieved, the utility
function specifies the tradeoff (for example, safety and speed)

● When there are several goals that the agent can aim for, none of which can be
achieved with certainty, utility provides a way in which the likelihood of success can
be weighted against the importance of the goal.

Partial observability and stochasticity are frequent in the real world, and so, therefore, is
decision making under uncertainty.
> A rational utility-based agent chooses the action that maximizes the expected utility
of the action outcomes.

Utility-based agents
Enviro

n
m

ent
Sensors

Actuators

Percepts

Actions

What the world is like now?

What action I should do now

How the world evolves

State

Utility

What my actions do

What it will be like if I do action A?

How happy I will be in such a state

Overview
Simple Reflex Agents Model-Based Reflex Agents

Characteristics:
* Make decisions based solely on the current percept.
* Do not have internal state representations.
* Use pre-defined rules or condition-action pairs to respond to stimuli.

Characteristics:
* Maintain an internal model or representation of the world.
* Use the internal model to make decisions based on both current and past percepts.
* Can handle partially observable environments more effectively than simple reflex
agents.

Limitations:
- Limited intelligence in dynamic or partially observable environments.

Limitations:
- May face challenges in environments with high uncertainty

Goal-Based Agents Utility-Based Agents

Characteristics:
* Have explicit goals that guide decision-making.
* Evaluate actions based on their contribution to achieving goals.
* Consider sequences of actions to accomplish objectives.

Characteristics:
* Evaluate actions based on a utility function, capturing preferences.
* Seek to maximize the expected utility of outcomes.
* Provide a more flexible and nuanced approach to decision-making

Limitations:
- Need well-defined goals and may struggle in highly dynamic or
uncertain environments (conflict and multiple goals)

Limitations:
- Require a well-defined utility function and can be computationally intensive

Overview

The choice of an agent program depends on the complexity and nature of the problem at hand. The
criticality of each type depends on the specific characteristics of the task or environment an agent is
designed to handle.

This decision should consider the environment and check how the agent model works in terms of:

● Adaptability: The ability to adapt to changes in the environment or goals.
● Computational Complexity: The computational requirements for decision-making.
● Knowledge Representation: How knowledge about the world is represented and utilized.
● Handling Uncertainty: The ability to make decisions in the presence of incomplete or

uncertain information.

Learning agent

Explicitly designing (a-priori) world models, actions’ causality, events, condition action rules constitutes a
significant bottleneck!

An agent able to learn would require less a-priori knowledge thus streamlining the design process.

Learning has another advantage, it allows the agent to operate in initially unknown environments and to
become more competent than its initial knowledge alone might allow.

A learning agent can be composed by four conceptual components:

● Learning element (which is responsible for making improvements)
● Performance element (which is responsible for selecting actions)
● Critic (which provides feedback on how the agent is doing and determines how the performance

element should be modified)
● Problem generator (which is responsible for suggesting actions that lead to new and informative

experiences.

Learning agent
Enviro

n
m

ent

Sensors

Actuators

Percepts

Actions

Performance element

Critic

Learning
element

Problem
generator

changes

knowledge

learning
goals

feedback

performance
standard

Agent program

How the components of agent programs actually work?

The whole course will be devoted to begin to answer this question properly.

We can draw some basic distinctions among the various ways that the components can
represent the environments that agent inhabits.

We can place the representations along an axis of increasing complexity and
expressive power:

● Atomic
● Factored
● Structured

Let’s focus on the component.What my actions do

Atomic representation

States of the environment are represented as a single black box with no internal structure.

Transitions across states are represent as relations (visualized as edges).

In Atomic representation each state of the world is indivisible.

Example: reaching a destination => each state represent my current city.
No attributes are needed from states B and C, only thing needed is to the ability to stay if B
equal C or not

B C

Factored representation

In factored representation each state is split up into a fixed set of attributes, each of which
can have a value.

Different states may share attributes.

Factored representations also allow to represent uncertainty (e.g. attribute without value).

Example: reaching a destination => possible variables: level of gas, GPS location etc.

B C

Structured representation

For many purposes, we need to understand the world as having things in it that are related to
each other (not just values).

B C

