
Intelligenza Artificiale

An introduction to NLP

Ivan Heibi
Dipartimento di Filologia Classica e Italianistica (FICLIT)
Ivan.heibi2@unibo.it

mailto:Ivan.heibi2@unibo.it


https://web.stanford.edu/~jurafsky/slp3/ 

https://web.stanford.edu/~jurafsky/slp3/


Introduction to NLP

People communicate using language, whether it's written or spoken 

For an effective interaction between computers and humans, it's crucial for 
computers to comprehend the natural languages that humans use. 

Natural Language Processing (NLP) is 
dedicated to teaching computers how 
to learn, process, and manipulate 
human languages

AI

ML
DL

NLP



NLP practices

NLP is used to comprehend the structure and significance of human language through the 
examination of various components such as syntax, semantics, pragmatics, and morphology.

Macro categories are: 
● Syntactic analysis (i.e., parsing or syntax analysis): recognizing the syntactic structure 

within a text and the dependency relationships among words.
● Semantic analysis: identifying the meaning of language. (since language is polysemic and 

ambiguous, semantics is considered one of the most challenging areas in NLP)

Some relevant sub-tasks:
● Word Sense Disambiguation
● Text Classification (e.g., Topic Modeling, Sentiment analysis)
● Named Entity Recognition 



NLP benefits

Some of the most relevant benefits of NLP are:

● Automate processes in real-time
Machines learn to sort and route information

● Perform large-scale analysis 
Helps machines automatically understand and analyze huge amounts of unstructured 
text data (e.g.,  social media comments or online reviews)

● Providing a more objective analysis
Humans are prone to mistakes, while computers provide a more objective analysis.
NLP tools can analyze large volumes of text data, with minimal reliance on unnecessary 
human intervention and with the ability to learn/adjust to your goals.



NLP approaches

● Symbolic Approach 
Utilizes manually crafted rules and knowledge bases to depict the structure and meaning 

of language
○ Example: a rule-based machine translation system to translate simple sentences word-for-word using 

a dictionary.

● Statistical Approach
statistical methods and machine learning systems are used to extract patterns from 

large amounts of text data
○ Example: analyzing millions of translated sentences and automatically deriving the translation rules.

● Neural Network Approach 
ANNs are used to learn representations of language from data.

○ Example: analyzing millions of translated sentences and learning to translate similar sentences without 

explicit rules.



NLP processing pipeline

Data 
acquisition

Preprocessing
Feature 

engineering 
Modelling Evaluating
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Step (1)
Data acquisition



Data acquisition

Gathering data for NLP tasks includes obtaining unprocessed (raw) textual data from diverse 

sources to establish a comprehensive dataset. 

This process entails evaluating the presence and ease of access to the data, determining if it is 

readily accessible, necessitates additional information, or mandates the creation of content 

from the beginning.

Two main scenarios:

● Data is ready: data stored in databases or repositories, ready to be gathered

● Less Data: insufficient data volume for a ML training or analysis. Employ data 

augmentation techniques to enhance the dataset.



Data acquisition: data augmentation and data sources
Data sources

● Open datasets: publicly accessible datasets (repositories like Kaggle, UCI Machine Learning Repository, 

or government databases). Data could be retrieved via APIs

● Web Scraping: data gathering from websites or forums by extracting pertinent information. 

● Extracting text from different formats: retrieve pertinent text from alternative textual formats, such as 

PDF.

Data augmentation
● Synonym substitution: substitute words with their synonyms to introduce variety to the dataset 

without significantly changing the context.

● Bigram reversal: change the order of word sequences by reversing bigrams to generate different 

combinations.

● Reverse translation: translate text into another language and then back to the original language to bring 

in varied expressions.

● Introducing Disturbances: add random noise or perturbations to the data as a means of augmentation.



Step (2)
Preprocessing



Preprocessing: cleaning

● Stripping HTML: text from web sources contain HTML tags (used for formatting) these 

aren't needed for language analysis.

● Handling special characters: for instance with Emojis , we can either convert them to 

text descriptions or remove them completely, depending on their relevance to the 

analysis.

● Spell Checking: if not informative, to ensure consistency and accuracy, spell checking 

operations are crucial to fix common typos in the text.



Preprocessing: basic operations

● Tokenization: text is converted into smaller pieces called tokens. This is done at word level 

(word tokenization) or sentence level (sentence tokenization) depending on the analysis task.

● Stop Word Removal: common words like "the" and "is," known as stop words, are removed. 

These words don't add much meaning and can clutter the analysis.

● Stemming/Lemmatization: words are simplified to their root form. stemming removes 

prefixes and suffixes, while lemmatization uses a dictionary to find the base form. This helps 

standardize the text for easier analysis.

● Lowercasing: text is converted to lowercase. Since uppercase/lowercase can sometimes affect 

analysis, this ensures uniformity.

● Language Detection: for multilingual content, the language of the text is identified. This helps 

tailor the analysis to the specific language nuances.



● Part-of-Speech (POS) Tagging: categorizing words in the text into grammatical classes 

such as nouns, verbs, and adjectives. This operation offers insights into the syntactic 

structure.

● Parsing: examining the grammatical arrangement of the sentences to recognize 

connections between words and establish the syntactic roles and dependencies.

● Coreference Resolution: addressing references within the text by connecting pronouns 

or noun phrases to their corresponding entities, ensuring a cohesive understanding and 

analysis. 
○ Example: "The brown dog chased the red ball across the park; it looks exhausted now." in this 

case “it” refers to the “brown dog”

Preprocessing: advanced operations



Step (3)
Feature Engineering



Feature engineering in NLP takes raw text, which is like a jumble of words, and transform it into 

features the machine can understand. 

The identified features are characteristics that capture the meaning of the text, how words relate to 

each other, and the context they appear in. This allows the machine to use the text effectively in 

tasks like classification or text analysis.

Some of the main techniques that could be adopted:

● Bag of Words (BoW)

● Term Frequency-Inverse Document Frequency (TF-IDF)

● N-Gram Models

● Word Embeddings (Word2Vec, GloVe, FastText)

● …

Feature Engineering



BoW technique focuses on the individual words themselves, ignoring their order or 

grammatical structure (i.e., a bag filled with words, completely jumbled up)

Considering we have a collection of documents, here's how it works:

● Each document is a bag: cleaning, removing unnecessary elements, and tokenizing the 

text.

● Building a word dictionary: all the unique words across all documents are collected, 

forming a vocabulary.

● Creating a word matrix: creating a table with documents as rows and unique words as 

columns. Each cell holds the number of times a particular word appears in a 

corresponding document.

Bag of Words (BoW)



Document 1: "The quick brown fox jumps over the lazy dog."

Document 2: "The dog is lazy. The fox is quick and brown."

Using BoW: 

● Vocabulary: {the, quick, brown, fox, jumps, over, lazy, dog, is, and}

● Matrix:

.

Bag of Words (BoW): example

the quick brown fox jumps over lazy dog is and

Document 1 2 1 1 1 1 1 2 1 0 0

Document 2 2 0 1 2 0 0 2 1 2 1



A popular technique used to weight the importance of words within a document or collection of 

documents. It helps us understand how relevant a specific word is to a particular document and to the 

entire corpus (all documents).

Term Frequency (TF):
Measures how often a word appears in a specific document. 

The more times a word appears, the higher its TF score.

➔ Example: in a document about "artificial intelligence" the word "machine" might have a higher TF

Inverse Document Frequency (IDF):
Measures how common a word is across all documents in the corpus. 

The rarer a word is, the higher its IDF score.

➔ Example: words like "the" or "a" might have a low IDF, as they appear frequently in most documents. 

Term Frequency-Inverse Document Frequency (TF-IDF)



Term Frequency-Inverse Document Frequency (TF-IDF)



Corpus:

Term Frequency-Inverse Document Frequency (TF-IDF): example

D1

word count

this 2

is 3

machine 1

learning 1

D2

word count

is 2

another 2

technique 1

learning 1

word = “machine”
● TF(“machine”, D1) = 1/7 = 0.14
● TF(“machine”, D2) = 0/6 = 0
● IDF(“machine”, Corpus) = log(2/1) = 0.3
➔ TFIDF(“machine”, D1, Corpus) = o.14 * 0.3 = 0.042
➔ TFIDF(“machine”, D2, Corpus) = o * 0.3 = 0

word = “is”
● TF(“is”, D1) = 3/7 = 0.42
● TF(“is”, D2) = 2/6 = 0.33
● IDF(“is”, Corpus) = log(2/2) = 0
➔ TFIDF(“is”, D1, Corpus) = o.42 * 0 = 0
➔ TFIDF(“is”, D2, Corpus) = o.33 * 0 = 0



An N-gram model is used to predict the next word in a sequence, based on the previous (N-1 words). 'N' 

refers to the number of words considered as context.

N-gram models are built by analyzing a large amount of text data (corpus). The model calculates the 

probabilities of different word sequences, including how frequently any given word follows another.

Types:

● Unigrams (N=1): only one word is considered (no context)

● Bigrams (N=2): two consecutive words are considered

● Trigrams (N=3): three consecutive words are considered

Applications:

● Text generation: to assist in text generation, e.g., suggesting next words in autocomplete tasks.

● Document classification: to categorizes text based on common language patterns.

● …

N-Gram Models



Building a chatbot aiming to predict the next word in a user's message. The corpus is made by 

a large collection of previous chat conversations.

The N-gram Model:

● Unigrams (N=1): words like "the", "a", "is" will likely have high frequencies.

● Bigrams (N=2): The model analyzes frequent word pairs. It may learn that "the quick" is 

often followed by "brown", "the weather" is often followed by "is".

● Trigrams (N=3): The model considers frequent sequences of three words. It may learn 

that "I am feeling" is frequently followed by "happy", "tired", or "hungry".

N-Gram Models: example



Word Embeddings

Instead of treating words as isolated entities, these techniques transform 

words and phrases into numerical representations, i.e. a dense vector 

representations in a continuous vector space (word2vec).  

➔ These vectors exist in a multidimensional space (vector space) 

such that similar words are positioned closer together.

Applications:

● Finding word analogies: Identifying words that share a similar 

relationship, like "king" is to "queen" as "man" is to "woman".

● Discovering semantic similarities: Determining how closely 

related words are in meaning, even if they don't directly 

appear together.

King

Man

King: [0.1, 0.8, 0.2, ...]

Queen: [0.15, 0.75, 0.2, …]

Man: [0.2, 0.1, 0.7, …]

Woman: [0.18, 0.09, 0.55, …]



Word Embeddings



Word2Vec

Scenario: a small corpus of text containing only three sentences:

● "The cat sat on the mat."

● "The dog chased the cat."

● "The dog wagged its tail."

Word Initial Vector

the [0.1, 0.2, 0.3]

cat [0.4, 0.5, 0.6]

sat [0.7, 0.8, 0.9]

… [x1,x2,x3]

Each word is a vector of 3 elements, 
with random values initially:  

Training:

● Iterate through the sentences, considering each word and its surrounding 
context.

● For each word, we predict the surrounding words based on its current 
vector representation.

● We compare the predicted probabilities with the actual occurrences of the 
surrounding words in the corpus.

● Based on the comparison (error), we update the word's vector slightly to 
improve the prediction accuracy for the surrounding words in the next 
iteration.

● This process continues through all sentences and words in the corpus for 
multiple iterations until the vectors converge and achieve a stable 
representation.



Word Embeddings: example

Building a recommendation system for a music streaming service. Users can search for songs 

through a free-text queries (e.g. by artist, genre, or even lyrics)

Application:

● Training the Model: the system is on a large dataset of music information, including song titles, 

artist names, and lyrics. This data is used to create word embeddings for these terms.

● Understanding User Queries: when a user types "happy songs," using word embeddings, the 

system recognizes the semantic similarity between "happy" and other words like "joyful," 

"upbeat," or "cheerful."

● Finding Relevant Recommendations: using word embeddings, the system identifies songs 

with similar semantic features in their titles, lyrics, or artist information. It suggests songs that 

might be considered "happy" even if the exact word "happy" isn't present.



Step (4)
Modelling



Modelling

Two main approaches: 

● Machine Learning (ML)

● Deep Learning (DL)

Machine learning (ML) applications engage in feature engineering by leveraging domain 

expertise to manually craft pertinent inputs for the models, aligning them with the problem 

domain.

Deep learning (DL) applications depend more on automated feature learning, enabling 

models to discern complex patterns from raw data. This diminishes the direct reliance on 

manual feature engineering and, to some extent, domain-specific inputs.



Machine Learning: Support Vector Machines (SVM)

SVMs offer a powerful approach to text classification by finding the optimal separation 

between categories in a high-dimensional space. Is based on:

1. Text preprocessing: text data is converted into numerical features, (e.g., tfidf, 

bag-of-words)

2. High-dimensional space: these features act as coordinates, placing each document in a 

high-dimensional space where similar documents are positioned closer together.

SVM seeks to identify a hyperplane, which is like a dividing line, that separates the different 

classes (e.g., "spam" and "not spam").

The SVM aims to maximize the margin, which is the distance between the hyperplane and the 

closest data points from each class (called support vectors). These support vectors are crucial 

for defining the decision boundary.



Machine Learning: Support Vector Machines (SVM)

source: https://en.wikipedia.org/wiki/Support_vector_machine#/media/File:Svm_separating_hyperplanes_(SVG).svg 

● H
1

 does not separate the classes.

 

● H
2

 does, but only with a small margin.

 

● H
3

 separates them with the maximal margin.

https://en.wikipedia.org/wiki/Support_vector_machine#/media/File:Svm_separating_hyperplanes_(SVG).svg


Support Vector Machines SVM): example

A system to automatically filter spam emails. A large training dataset containing both spam and 

non-spam emails is provided.

1. Data Preprocessing and feature engineering:
a. BagOfWords: counting the frequency of each word in the email.

b. TF-IDF: assigning weights to words based on their importance within the email and the 

entire dataset.

c. Other features engineering techniques (e.g., certain keywords or URLs).

2. Training the SVM: learning to distinguish between spam and non-spam email features. 

(identifies the hyperplane that best separates the two classes in the high-dimensional feature 

space).

3. Classifying New Emails: new email features are extracted and positioned in the same 

high-dimensional space. 



Step (5)
Evaluating



Evaluating

Assessment/Evaluating within the NLP pipeline is crucial, involving intrinsic and 

extrinsic evaluations to thoroughly measure model performance from both technical 

and practical perspectives. 

● Intrinsic Evaluation
Focuses on assessing the technical aspects and capabilities of the model in 

isolation, without considering its real-world application.

● Extrinsic evaluation 

Measures the model’s performance in real-world applications (e.g. business 

contexts), considering its impact and utility in practical scenarios.



NLP today



Large language models (LLMs) are massive neural networks trained on enormous amounts of 
text data (i.e., hundreds of billions of words). ChatGPT and Gemini are Large language models.

LLMs can comprehend long-term dependencies, intricate relationships among words, and 
subtleties inherent in natural language. LLMs have the capability to process all words 
simultaneously, leading to accelerated training and inference.

Transformer models (Deep learning technique) is used during the modelling step (i.e. 
step 4) of the NLP pipeline

Transformers are specifically designed to capture relationships in sequential data, relying on a 
self-attention mechanism to grasp global dependencies between input and output.

Large Language Models (LLMs)



Pretend we have the sentence: "The dog chased the cat"

● Self-attention: for each word It examines all the other words in the sentence to determine which 
words are most relevant. To create a richer, contextual representations for each word.

○ Example: when focusing on "chased", it might assign higher weights to "dog" (what's doing the 
chasing) and "cat" (what's being chased).

● Multi-head attention: transformers have multiple attention heads running in parallel. Each head can 
focus on different parts of a sentence or different relationships between words. This allows them to 
capture even more complex patterns.

● Positional encoding: transformers don't process words sequentially (unlike traditional recurrent 
models). To keep track of word order, positional encoding injects information about a word's position 
in the sequence into its representation.

● Feed-forward networks: each word's representation (self and multi) passes through a feed-forward 
neural network for further processing. This adds non-linearity and helps refine the representations.

Transformers: How does it work?




