
Intelligenza Artificiale

Introduction to Artificial
Neural Networks

Ivan Heibi
Dipartimento di Filologia Classica e Italianistica (FICLIT)
Ivan.heibi2@unibo.it

mailto:Ivan.heibi2@unibo.it

Neurons

● Biological neurons receive short electrical
impulses called signals from other neurons via
these synapses

● When a neuron receives a sufficient number of
signals from other neurons within a few
milliseconds, it fires its own signals

● Neurons are organized in a vast network of
billions of neurons, each neuron typically
connected to thousands of other neurons.

Logical computations with neurons

McCulloch and Pitts proposed a very simple model of the biological neuron, which later became known as
an artificial neuron: it has one or more binary (on/off) inputs and one binary output.

The artificial neuron simply activates its output when more than a certain number of its inputs are active.

McCulloch and Pitts showed that even with such a simplified model it is possible to build a network of
artificial neurons that computes any logical proposition you want.

A neuron is activated
when at least two of its
inputs are active.

The Perceptron – Threshold Logic Unit (TLU)
The Perceptron is one of the simplest ANN architectures (invented in 1957 by Frank Rosenblatt)

It is based on a slightly different artificial neuron called a threshold logic unit (TLU).

A single TLU can be used for simple linear binary classification.

It computes a linear combination of the inputs and if the result exceeds a threshold, it outputs the positive class or else
outputs the negative class.

Training a TLU in this case means finding the right values for w1, w2, and w3 .

(w1 x1 + w2 x2 + ⋯ + wn xn)

The Perceptron

A Perceptron is simply composed of a single layer of TLUs, with each TLU connected to all the inputs.

When all the neurons in a layer are
connected to every neuron in the
previous layer (i.e., its input neurons), it is
called a fully connected layer or a dense
layer.

How is a Perceptron trained?

The Perceptron training algorithm proposed by Frank Rosenblatt was largely inspired by Hebb’s rule.

Hebb suggested that when a biological neuron often triggers another neuron, the connection between
these two neurons grows stronger, i.e. : the connection weight between two neurons is increased whenever
they have the same output.

Perceptrons are trained using a
variant of this rule that takes
into account the error made by
the network; it reinforces
connections that help reduce
the error.

• w
i,j

 is the connection between the ith input neuron and jth output neuron

• x
i
 is the ith value of the current training instance

• y
i
 (hat) is the output of the jth output neuron

• y
i
is the target output of the jth output neuron

• (eta) is the learning rate

Let's assume a Perceptron with two inputs is classifying images of cats and dogs.

The output of the perceptron (the probability that the image is a dog).

My desire is

If we have:

Then the weights are updated as follow:

> The two weights would be increased if both x_1 and x_2 are positive (i.e., the image has typical dog
features) and decreased if both x_1 and x_2 are both negative.

Perceptron example

Multi-Layer Perceptrons

An MLP is composed by:

• one (passthrough) input layer,

• one or more layers of TLUs, called hidden layers,

• and one final layer of TLUs called the output layer.

For many years researchers struggled to find a way to
train MLPs, without success. But in 1986, Rumelhart,
Hinton and Williams published a groundbreaking
paper introducing the backpropagation training
algorithm, which is still used today [1].

[1] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

Backpropagation

For each training instance:

• Forward pass: feed the network and pass through
all the layers until we get the output layer

• Measure the error (i.e. how much the output
differs from the expected output)

• Backward pass: go through each layer in reverse
to measure the error contribution of each
connection

• Gradient Descent step: tweak all the connection
weights in the network, using the error gradients

Rumelhart et al. replaced the
step function with the logistic function (sigmoid)

σ(x) = 1 / (1 + exp(–x)).

Feed forward neural networks

A feed-forward network has connections only in one direction.

A feed-forward neural network represents a function of its current input (no internal state).

w
11

w
12

w
21

w
22

w
31

w
32

Recurrent neural networks

A recurrent neural network feeds its outputs back into its inputs.

This means that the response of the network to a given input depends on its initial state,
which may depend on previous inputs. Hence they can support short term memory.

w
11

w
12

w
21

w
22

w
31

w
32

Deep Neural Network

A deep neural network is an artificial neural network with multiple layers between the input
and output layers.

Deep Neural Network usage

The choice of the neural network type depends on various factors

● Task:
DNNs are well-suited for complex tasks such as image recognition, automatic translation, and
text generation. However, for simpler tasks like binary classification or linear regression,
simpler neural networks like perceptrons might be sufficient.

● Dataset size
DNNs typically require large amounts of data to learn effectively. A simpler neural network
might be more efficient with smaller datasets.

● Availability of computational resources
Training a DNN can be time-consuming and computationally demanding. It might be necessary
to use a simpler neural network, when the computational resources are limited,

Deep Neural Network usage

https://playground.tensorflow.org/#activation=sigmoid&batchSize=16&dataset=xor®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=1
&seed=0.31628&showTestData=false&discretize=false&percTrainData=30&x=true&y=true&xTimesY=false&xSquared=true&ySquared=false&cosX=false&sinX=false&cosY=fal
se&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

https://playground.tensorflow.org/#activation=sigmoid&batchSize=16&dataset=xor®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=1&seed=0.31628&showTestData=false&discretize=false&percTrainData=30&x=true&y=true&xTimesY=false&xSquared=true&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://playground.tensorflow.org/#activation=sigmoid&batchSize=16&dataset=xor®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=1&seed=0.31628&showTestData=false&discretize=false&percTrainData=30&x=true&y=true&xTimesY=false&xSquared=true&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://playground.tensorflow.org/#activation=sigmoid&batchSize=16&dataset=xor®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=1&seed=0.31628&showTestData=false&discretize=false&percTrainData=30&x=true&y=true&xTimesY=false&xSquared=true&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

