
Intelligenza Artificiale

Knowledge representation
and reasoning
Propositional logic

Ivan Heibi
Dipartimento di Filologia Classica e Italianistica (FICLIT)
Ivan.heibi2@unibo.it

mailto:Ivan.heibi2@unibo.it

Humans, it seems, know things; and what they know helps them do things.

Intelligence of humans is achieved - not (always) by purely reflex mechanisms
but by processes of reasoning that operate on internal representation of
knowledge.

In AI, knowledge- based agents use a process of reasoning over an internal
representation of knowledge to decide what actions to take.

The central component of a knowledge-based agents is its knowledge base.

Knowledge-based agents

A knowledge base (KB) is a “set of sentences” .

Each sentence is expressed in a language (i.e. the knowledge representation
language) and represents some assertion about the world (called, axioms).

Operations:
● TELL (add a new sentence to the knowledge base)
● ASK (query the knowledge base)

Both operation may involve inference.
Inference is the process of deriving consequences from premises.

Knowledge base

The background knowledge is the knowledge “initially” contained in the KB of
an agent.

This may include knowledge about:
● Properties of the environments
● Properties of the objects
● Events might be useful for the task of the agents
● Other agents in the environment

....

Agents with background knowledge

Each time the agent program is called does three things:
● TELLs the knowledge base what it perceives
● ASKs the knowledge base what action it should perform.
● TELLs the knowledge base which action was chosen, and the agent executes the

action.

It is similar to the the agent program skeleton already seen but the behaviour of a
knowledge based agents can be completely specified at knowledge level.
> We need specify only what agent knows and what its goals are.

It is worth noticing that the description of the behaviour is independent of how the
agent actually work how the operations are implemented. The implementation of the
behaviour is done at symbol/implementation level

Knowledge level and Symbol/Implementation Level

An automated taxi with:
● Goal of taking a passenger from Bologna to Milan
● He knows that the A1 is the only link between the two locations

We expect it to drive through A1 because it knows that will achieve its goal.

This analysis is independent of how the taxi works at the implementation level (it works
on the knowledge level). such as:
> “The geographical knowledge is implemented as linked lists or pixel maps?“
> it reasons by manipulating strings or by propagating noisy signals in a network of neurons?
> … etc

Knowledge Base Agent - Example

Knowledge Base Agent – pseudocode

1

2

3
4
5
6
7

function KB-AGENT(percept) returns an action

 persistent: KB, a knowledge base

 t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept,t))
action←ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t←t + 1
return action

Sentences of a knowledge base are expressed according to the syntax of the
representation language. The syntax specifies all the sentences that are well formed
>Example: in arithmetics, X+Y=4 vs 4XY+=

A logic must also define the semantics (meaning) of sentences. The semantics defines
the truth of each sentence with respect to each possible world (also called model)
> Example: X + Y = 4 is true in a world where X = 2 and Y=2, but also in a world where X =
3 and Y = 1. The sentence is false in a world where X = 1 and Y = 1

In standard logics, every sentence must be either true or false in each possible world (model).

Logic

The possible models are just all possible assignments of nonnegative integers to the
variables x and y, which determine the truth of any sentence of arithmetic whose
variables are x and y.

If a sentence α is true in model m, then we say:
● m satisfies α; or
● m is a model of α

We use the notation M(α) to mean the set of all models of α.

A sentence α entails a sentence β, if β logically follows α

α ⊨ β
α ⊨ β if and only if, in every model in which α is true, β is also true:

α ⊨ β if and only if M(α) ⊆ M(β)

Satisfaction and Entailment

Example:
x=0 entails xy = 0

The definition of entailment can be applied to derive conclusions—that is, to carry out logical
inference

if an inference algorithm i can derive α from KB we write:

An inference algorithm that derives only entailed sentences is called sound or
truth-preserving

An inference algorithm is complete if it can derive any sentence that is entailed

Inference

Suppose that sentences A, B and C are derivable from a KB, but only A and B are
entailed by the KB.

> An algorithm that derives C from the KB is not sound.

> An algorithm that derives only A from the KB is not complete.

> An algorithm that derives only A and B from the KB is sound and complete

Inference – summary

An AI system (KB) designed for image recognition.

Sentences A, B, and C could represent different information deducible from KB:

● A: "The object is a dog"
● B: "The object is brown"
● C: "The object is a domestic animal"

Based on the information that is logically implied by the premises (KB), we might have
only A and B as entailed consequences.

> We could say that "The object is a dog" (A) and "The object is brown" (B) are the only
information that we can guarantee to be true (based on KB)

> The sentence C ("The object is a domestic animal") might be deducible, but it could
depend on further considerations not explicitly stated in KB

Inference – example

The grounding is the connection between the logical statements and the aspects of the
real world where the agent exists.

> how do we know that KB is true in the real world?

Grounding

Representation

World

Sentences Sentences

Aspects of the
real world

Aspects of the
real world

Entails

Sem
antics

Sem
antics

Follows

Self assessment

https://forms.gle/TZqhW6TZFcinjq7t6

https://forms.gle/TZqhW6TZFcinjq7t6

Propositional
Logic

The atomic sentences consist of a single propositional symbol

Each symbol stands for a proposition that can be true or false

Symbols start with an uppercase and may contain other letters or subscripts (e.g. P, Q,
Flag, StoreOpen, etc)

The symbol True is always true, False is always false

Complex sentences are constructed from simpler sentences, using parentheses an
logical connectives

Propositional Logic: syntax

¬ (not). used to negate a sentence (e.g., ¬A)

∧ (and). used to conjunct two sentences (e.g., A ∧ B)

∨ (or). used to disjunct two sentences (e.g., A ∨ B)

⇒ (implies). used to assert implications (e.g., A ⇒ B, if A is True then B is True), Implications are also
known as rules or if–then statements.

⇔ (if and only if). used to assert equivalences (e.g., A ⇔ B, A is True if and only if B is True)

S → AtomicSentence | ComplexSentence

AtomicSentence → True| False| P| Q| R| ...

ComplexSentence → | (S) | ¬S | S∧S | S∨S | S⇒S | S⇔S

Operator precedence: ¬,∧,∨,⇒,⇔

Propositional logic: Logical connectives

The semantics defines the rules for determining the truth of a sentence with respect to a particular
model.

In propositional logic, a model simply fixes the truth value for every proposition symbol.
> For example a model could be m = {A = false, B = true}

Once the truth value is specified for every proposition symbol of the model, the semantics must
specify how to compute the truth value of any sentence.

Propositional logic: semantics

Propositional logic: truth tables

Example: the vacuum cleaner

KB:
CleanA is True if position A is clean
CleanB is True if position B is clean
VacuumA is True if the vacuum position is A
VacuumB is True if the vacuum position is B

VacuumA ⇒ CleanA
VacuumB ⇒ CleanB
VacuumA ∧ VacuumB ⇔ False
VacuumA ∨ VacuumB ⇔ True

Percept:
VacuumA, ¬CleanB

Goal:
CleanA ∧ CleanB

A simple inference procedure

In which model the goal (i.e. a sentence) is satisfied?

A greedy algorithm would enumerate all possible worlds and check that the goal is true
in very model in which the KB is true.

The KB is true in:
● m1 = {VacuumA = F, VacuumB = T, CleanA = T, CleanB = T}
● m2 = {VacuumA = T, VacuumB= F, CleanA = T, CleanB = T}
● ...

There are finitely models (in particular 2n) => Time complexity O(2n)

Finitely many is not always the same as “few”

A simple inference procedure – truth table (1)

VA VB CA CB VA ⇒ CA VB ⇒ CB VA ∧ VB ⇔ False VA ∨ VB ⇔ True CA ∧ CB

F F F F T T T F F

F F F T T T T F F

F F T F T T T F F

F F T T T T T F T

F T F F T F T T F

F T F T T T T T F

F T T F T F T T F

F T T T T T T T T

T F F F F T T T F

T F F T F T T T F

T F T F T T T T F

T F T T T T T T T

T T F F F F F T F

T T F T F T F T F

T T T F T F F T F

T T T T T T F T T

A simple inference procedure – truth table (2)

VA VB CA CB VA ⇒ CA VB ⇒ CB VA ∧ VB ⇔ False VA ∨ VB ⇔ True CA ∨ CB

F F F F T T T F F

F F F T T T T F F

F F T F T T T F F

F F T T T T T F T

F T F F T F T T F

F T F T T T T T T

F T T F T F T T F

F T T T T T T T T

T F F F F T T T F

T F F T F T T T F

T F T F T T T T T

T F T T T T T T T

T T F F F F F T F

T T F T F T F T F

T T T F T F F T F

T T T T T T F T T

Theorem proving: Logical equivalence

Theorem proving applies rules of inference directly to the sentences in our KB in order
to construct a proof of the desired sentences without consulting models

Theorem provers use logical equivalence: two sentences are logically equivalent if they
are true in the same set of models

α ≡ β

For instance:
A ∧ B ≡ B ∧ A

α ≡ β if and only if α ⊨ β and β ⊨ α

Theorem proving: Logical equivalence

Theorem proving: Validity

A sentence is valid if its true in all models

 For example, this is a valid sentence:
A ∨ ¬A

Valid sentences are also called tautologies

What about this one ¬(A∧¬A) ?

Theorem proving: Deduction theorem

Why do we need valid sentences?

For any pair of sentences α and β we have that:

α ⊨ β if and only if α⇒ β is valid

The theorem establishes a relationship between proofs in formal logic systems and
conditional statements

A sentence is satisfiable if it is true in, or satisfied by, some model
> can be checked by enumerating the possible models until one is found that
satisfies the sentence.

The problem of determining the satisfiability of sentences in propositional logic is
called SAT problem.

For example:
(P∨¬Q)∧(¬P∨R) is satisfiable
> since at least one model makes true,
e.g.: P = True, Q=False, R=True

Check (step by step):
1. (P∨¬Q) is True
2. (¬P∨R) is True
3. (P∨¬Q)∧(¬P∨R) is True

Theorem proving: Satisfiability

Validity and satisfiability are of course connected!

● α is valid if and only if ¬α is unsatisfiable;
● α is satisfiable if and only if ¬α is not valid.

Another important result is:
α ⊨ β if and only if the sentence (α ∧ ¬β) is unsatisfiable

> Proof it by contradiction: One assumes a sentence β to be false and shows that
this leads to a contradiction with known axioms α.

Validity and Satisfiability

One final property of logical systems is monotonicity, which says that the set of
entailed sentences can only increase as information is added to the KB

For any sentences α and β, if KB ⊨ α then KB∧β ⊨ α.

For example (Vacuum example):
If the KB contains the additional assertion β stating that Cell A is clean in the world, helps the
agent draw additional conclusions, but it cannot invalidate any conclusion α already
inferred—such as the conclusion that Cell B is dirty

Monotonicity

Inference rules can be applied to derive a proof – a chain of conclusions that leads
to the desired goal.

The best-known rule is called Modus Ponens!

The notation means that, whenever any sentences of the form α ⇒ β and α are
given, then the sentence β can be inferred.

Inference and proofs: Modus ponens

From a conjunction, any of the conjuncts can be inferred:

Given two sentences α and β a conjunction could be asserted:

Inference and proofs: AND elimination/introduction

Given a disjunction between α and β, and the negation of one of the disjuncts, the
other could be inferred:

Given α, then a disjunction with any β could be formed:

Inference and proofs: OR elimination/introduction

By considering the possible truth values of α and β, one can easily show once and for all that
Modus Ponens and And-Elimination are sound

Used on instances to generate other sound inferences without the need for enumerating
models

All of the logical equivalences (seen before) can be used as inference rules

Not all inference rules work in both directions.
E.g., we cannot run Modus Ponens in the opposite direction to obtain α ⇒ β and α from β.

Inference and proofs

Exercises

Which of the following propositional logic sentences is well-formed:

Exercises (1)

1. p∧(q∨¬r) Yes

2. ¬(p ⇒ q) Yes

3. p∧q⇒ No

4. (p∨q)∧
(¬p∨r)

Yes

5. ¬(p∧q∨¬) No

6. p⟺(q∧¬r) Yes

Which of the following propositional logic sentences is well-formed:

Exercises (1) – Solution

1. p∧(q∨¬r) Yes

2. ¬(p ⇒ q) Yes

3. p∧q⇒ No

4. (p∨q)∧
(¬p∨r)

Yes

5. ¬(p∧q∨¬) No

6. p⟺(q∧¬r) Yes

Compute the truth table of (P∧Q)∨¬R

Exercises (2)

P Q R ¬R (P∧Q) (P∧Q)
∨¬R

F F F T F T

F F T F F F

F T F T F T

F T T F F F

T F F T F T

T F T F F F

T T F T T T

T T T F T T

Compute the truth table of (P∧Q)∨¬R

Exercises (2) – Solution

P Q R ¬R (P∧Q) (P∧Q)
∨¬R

F F F T F T

F F T F F F

F T F T F T

F T T F F F

T F F T F T

T F T F F F

T T F T T T

T T T F T T

Compute the truth table of (p∨q)∧(¬p∧r)

Exercises (3)

p q r ¬p (¬p∧r
)

(p∨q) (p∨q) ∧ (¬p∧r)

F F F T F F F

F F T T T F F

F T F T F T F

F T T T T T T

T F F F F T F

T F T F F T F

T T F F F T F

T T T F F T F

Compute the truth table of (p∨q)∧(¬p∧r)

Exercises (3) – Solution

p q r ¬p (¬p∧r
)

(p∨q) (p∨q) ∧ (¬p∧r)

F F F T F F F

F F T T T F F

F T F T F T F

F T T T T T T

T F F F F T F

T F T F F T F

T T F F F T F

T T T F F T F

Let’s consider a propositional language where

● H means “Paul is happy”

● P means “Paul paints a picture”

● R means “Rachel is happy”

Formalize the following sentences in propositional logic:

Exercises (4)

1. If Paul is happy and paints, then Rachel isn’t happy (H∧P)⇒¬R

2. If Paul is happy, then he paints a picture H⇒P

3. If Rachel isn’t happy Paul is happy ¬R ⇒ H

Let’s consider a propositional language where

● H means “Paul is happy”

● P means “Paul paints a picture”

● R means “Rachel is happy”

Formalize the following sentences in propositional logic:

Exercises (4) – Solution

1. If Paul is happy and paints, then Rachel is happy (H∧P)⇒R

2. If Paul is happy, then he paints a picture H⇒P

3. If Rachel isn’t happy Paul is happy ¬R ⇒ H

Let’s consider the same example of Paul and Rachel.

Premise:
● If Paul is happy and paints a picture (H∧P), then Rachel is happy (R)
● If Paul is happy (H) then he paints a picture (P)

Given Information: Paul is happy (H)
Inference: Conclude whether Rachel is happy (R) based on the given information.

Exercises (5)

Let’s consider the same example of Paul and Rachel.

Premise:
● If Paul is happy and paints a picture (H∧P), then Rachel is happy (R)
● If Paul is happy (H) then he paints a picture (P)

Given Information: Paul is happy (H)
Inference: Conclude whether Rachel is happy (R) based on the given information.

1) The premise (1): (H∧P)⇒R

2) The premise (2): H⇒P

3) Given: H

4) Modus Ponens (2) and (3): P

5) And-introduction (3) and (4): H∧P
6) Modus Ponens (1) and (5): R

> Rachel is Happy!

Exercises (5) – Solution

(H∧P)

⇒R

H⇒P H

P

H∧P

R

Forwards Proof:
● Starts from premises and uses logical rules of inference to derive a

conclusion.
● Shows that if certain conditions hold, then a particular conclusion can be

derived

Backwards Proof:
● Starts from the conclusion and works backward, showing that the

conclusion follows logically from certain assumptions.
● Shows that the conclusion is a logical consequence of certain conditions.

Proofs forwards and backwards

Prove that ¬R follows from P∧ S, Q ⇒¬R, and ¬S ∨ Q

1. P∧ S (given)
2. Q ⇒¬R (given)
3. ¬S ∨ Q (given)
4.
5.
6.
7. ¬R

Proofs forwards and backwards - backward example

Prove that ¬R follows from P∧ S, Q ⇒¬R, and ¬S ∨ Q

1. P∧ S (given)
2. Q ⇒¬R (given)
3. ¬S ∨ Q (given)
4.
5.
6. Q
7. ¬R (modus ponens: 6, 2)

Proofs forwards and backwards - backward example

Prove that ¬R follows from P∧ S, Q ⇒¬R, and ¬S ∨ Q

1. P∧ S (given)
2. Q ⇒¬R (given)
3. ¬S ∨ Q (given)
4.
5. ¬¬S
6. Q (or-elimination: 3,5)
7. ¬R (modus ponens: 6, 2)

Proofs forwards and backwards - backward example

Prove that ¬R follows from P∧ S, Q ⇒¬R, and ¬S ∨ Q

1. P∧ S (given)
2. Q ⇒¬R (given)
3. ¬S ∨ Q (given)
4. S
5. ¬¬S (double negation: 4)
6. Q (or-elimination: 3,5)
7. ¬R (modus ponens: 6, 2)

Proofs forwards and backwards - backward example

Prove that ¬R follows from P∧ S, Q ⇒¬R, and ¬S ∨ Q

1. P∧ S (given)
2. Q ⇒¬R (given)
3. ¬S ∨ Q (given)
4. S (and-elimination: 1)
5. ¬¬S (double negation: 4)
6. Q (or-elimination: 3,5)
7. ¬R (modus ponens: 6, 2)

Proofs forwards and backwards - backward example

Usually, if the primary goal is to
establish the truth of a specific known
conclusion, a backward proof might
be the most effective choice.

Truth Table Generator (by the university of Stanford):
https://web.stanford.edu/class/cs103/tools/truth-table-tool/

Propositional logic test on Wolfram demonstration projects (free online
resource): https://demonstrations.wolfram.com/PropositionalLogicTest/

Useful links

https://web.stanford.edu/class/cs103/tools/truth-table-tool/
https://demonstrations.wolfram.com/PropositionalLogicTest/

