
Intelligenza Artificiale

Data Structures and
Computational thinking

Ivan Heibi
Dipartimento di Filologia Classica e Italianistica (FICLIT)
Ivan.heibi2@unibo.it

mailto:Ivan.heibi2@unibo.it

A computer is a machine that can be instructed to carry out sequences of
arithmetic or logical operations automatically for processing data
represented by alphanumeric characters.

More generic: an agent that is capable of making calculations and producing a
response (output) based on some initial information (input)

Writing a program: communicating with a computer using a language (formal)
that both the human instructor and the computer itself can understand.

The computer executes instructions (software) to manipulate information
(data structures)

What is a computer?

Abstraction is a conceptual process where general rules and concepts are derived from
the usage and classification of specific examples

Abstractions may be formed by filtering out the information content of a concept or an
observable phenomenon, selecting only the aspects which are relevant for a particular
subjectively valued purpose.

Abstraction and computational thinking

What these two
situations have in
common?

Computational thinking is an approach to problem-solving, system development, and
understanding human behavior that embraces the fundamental concepts of
computation

Main abstractions in computer science:
● Data structures
● Models
● Algorithms
● Networks

Abstraction and computational thinking

1. Represent the problem domain with terms that can
be interpreted and manipulated by the machine.

2. Represent the problem with respect to its
representation:
a. Define the initial state as a configuration of the

data
b. Define the final state as a configuration of the

data

3. Devise an algorithm able to progress data from an
the initial configuration to the final configuration
(solution)

4. Implementation of algorithm and data structure

Typical Scenario

1: a dot on the x-axis

Problem:
I want a train to stop at the third station
on its route

1. Represent the problem domain with terms that can be
interpreted and manipulated by the machine.

2. Represent the problem with respect to its
representation:

a. Define the initial state as a configuration of the
data

b. Define the final state as a configuration of the data

3. Devise an algorithm able to progress data from the
initial configuration to the final configuration (solution)

4. Implementation of algorithm and data structure

Typical Scenario example

0 1 2 3 4

Problem:
I want a train to stop at the third station
on its route

1. Represent the problem domain with terms that can be
interpreted and manipulated by the machine.

2. Represent the problem with respect to its
representation:

a. Define the initial state as a configuration of the
data

b. Define the final state as a configuration of the data

3. Devise an algorithm able to progress data from the
initial configuration to the final configuration (solution)

4. Implementation of algorithm and data structure

Typical Scenario example

0 1 2 3 4

1: a dot on the x-axis

2.a: 0

2.b: 2

Problem:
I want a train to stop at the third station
on its route

1. Represent the problem domain with terms that can be
interpreted and manipulated by the machine.

2. Represent the problem with respect to its
representation:

a. Define the initial state as a configuration of the
data

b. Define the final state as a configuration of the data

3. Devise an algorithm able to progress data from the
initial configuration to the final configuration (solution)

4. Implementation of algorithm and data structure

Typical Scenario example

0 1 2 3 4

1: a dot on the x-axis

2.a: 0

2.b: 2

3. Move right; if position = 2 then stop;
otherwise keep moving right

Problem:
I want a train to stop at the third station
on its route

1. Represent the problem domain with terms that can be
interpreted and manipulated by the machine.

2. Represent the problem with respect to its
representation:

a. Define the initial state as a configuration of the
data

b. Define the final state as a configuration of the data

3. Devise an algorithm able to progress data from the
initial configuration to the final configuration (solution)

4. Implementation of algorithm and data structure

Typical Scenario example

0 1 2 3 4

1: a dot on the x-axis

2.a: 0

2.b: 2

3. Move right; if position = 2 then stop;
otherwise keep moving right

4. x = 0
while (x != 2)

x = x+1

Problem:
The train must proceed as long as the next
station has more people than the current one

> the train can call and ask for how many
people there is at the next station only

Utility function example (local maximum)

0 1 2 3 4

1: a dot on the x-axis

1: a dot on the x-axis

2.a: 0

2.b: the nearest N with higher number of people
(utility)

Problem:
The train must proceed as long as the next
station has more people than the current one

> the train can call and ask for how many
people there is at the next station only

Utility function example (local maximum)

0 1 2 3 4

Problem:
The train must proceed as long as the next
station has more people than the current one

> the train can call and ask for how many
people there is at the next station only

Utility function example (local maximum)

0 1 2 3 4

1: a dot on the x-axis

2.a: 0

2.b: the nearest N with higher number of people
(utility)

3. if number of people at current position is higher than
the one of the next station then stop; otherwise keep
moving right

while (true)
 if (u(x+1) > u(x))
 x = x+1
 else
 break

Problem:
The train must proceed as long as the next
station has more people than the current one

> the train can call and ask for how many
people there is at the next station only

Utility function example (local maximum)

0 1 2 3 4

1: a dot on the x-axis

2.a: 0

2.b: the nearest N with higher number of people
(utility)

3. if number of people at current position is higher than
the one of the next station then stop; otherwise keep
moving right

4.

u(x)

e.g., u(1) = 200

max = u(0)
while (x <= 10)
 x = x + 1
 if (u(x) > max)
 max = u(x)

Problem:
I would like a drone to fly over all five train
stations and return to me the station with
the highest number of people.

Utility function example (global maximum)

0 1 2 3 4

1: a dot on the x-axis

2.a: 0

2.b: N with max number of people (utility)

3. Move right; if number of people at current
position is higher than the one of the previous
station keep track of the station; keep moving right

4.

Data

Primitive data types (indicate values)
● Integer: -.... 2, -1, 0, 1, 2
● String (character sequence): “Artificial Intelligence”, “Ivan” (“I”+”v”+”a”+”n”)
● Boolean true/false
● Real e.g. 0.1

An entity is something we may want to say something about

Individuals (identify entities)

● An entity may have attributes
(E.g. Cillian Murphy as a person with his tax id, birth date, height etc.)

● An entity may have relations with other entities
(E.g. Christopher Nolan directed Cillian Murphy)

● An entity may belong to a class
(E.g. Cillian Murphy is an individual of the class Person)

Entities and relations

Use abstraction to define entities.

Entities:
Cillian Murphy is an actor:
47 years old, 175 (cm) tall from Ireland,
he has 3 awards

Christopher Nolan is a director with
53 years old, 185 (cm) tall from UK
he won 8 awards and directed
20 movies

Oppenheimer is a movie released in 2023

Relations:
Christopher Nolan directed Oppenheimer
Cillian Murphy worked with Christopher Nolan

Actor

salary
awards

Person

Age
Height

Country
…

Movie

Title
Year

…

Director

num movies
awards

Self Assessment

https://forms.gle/cdghGwTTxfEt65tQ6

https://forms.gle/cdghGwTTxfEt65tQ6

Data structures

A Data Structure is a data organization, management, and storage format

List

A list or sequence is an abstract data type that represents a countable number of
ordered values, where the same value may occur more than once.

Queue

A queue is a collection of entities that are maintained in a sequence and
can be modified by the addition of entities at one end of the sequence and
the removal of entities from the other end of the sequence.

Stack

A stack is an abstract data type that serves as a collection of elements, with two main
principal operations:

● Push, which adds an element to the collection, and
● Pop, which removes the most recently added element that was not yet removed.

Array

An array is a data structure consisting of a collection of elements (values or
variables), each identified by at least one array index or key.

Set

A set is an abstract data type that can store unique values, without any
particular order.

Dictionary

A dictionary is an abstract data type composed of a collection of (key, value)
pairs, such that each possible key appears at most once in the collection.

Tree

A tree is an abstract data type that simulates a hierarchical tree structure, with
a root value and subtrees of children with a parent node, represented as a set
of linked nodes.

Example: Binary Search Tree

Binary Search Tree is a node-based binary tree data structure which has the following
properties:

● The left subtree of a node contains only nodes with keys lesser than the node’s key.
● The right subtree of a node contains only nodes with keys greater than the node’s key.
● The left and right subtree each must also be a binary search tree.

20

10 30

27 3213

Example: Binary Search Tree – insert

20

10 30

27 3213

20

10 30

27 3213

29

29Check the value to be inserted (x) with the value of the current node:
● If X is less than val move to the left subtree.
● Otherwise, move to the right subtree.
● Once the leaf node is reached, insert X to its right or left based on

the relation between X and the leaf node’s value.

Graph

A graph is an abstract data type that is meant to implement the undirected
graph and directed graph concepts from the field of graph theory within
mathematics.

Matrix

A matrix is a bi-dimensional array (an array of arrays)

Tensor

A tensor is a multi-dimensional array (e.g. an array of arrays of arrays)

Example: Library Catalog

Create a data structure to represent a library catalog.
● The catalog needs to store information about books, including their titles,

authors, publication years, and availability.
● Design a data structure to efficiently organize and manage this

information.

Example: Library Catalog

BOOK

Author : <STRING>
Title: <STRING>

Year: <INTEGER>
Available: <BOOLEAN>

LIBRARY

Books : <ARRAY>

Create a data structure to represent a library catalog.
● The catalog needs to store information about books, including their titles,

authors, publication years, and availability.
● Design a data structure to efficiently organize and manage this

information.

